2.) Once these incident rays strike the lens, refract them according to the three rules of refraction for converging lenses.
The ray that passes through the focal point on the way to the lens will refract and travel parallel to the principal axis. Use a straight edge to accurately draw its path. The ray which traveled parallel to the principal axis on the way to the lens will refract and travel through the focal point. And the ray which traveled to the exact center of the lens will continue in the same direction. Place arrowheads upon the rays to indicate their direction of travel. Extend the rays past their point of intersection.
3.) Mark the image of the top of the object.
The image point of the top of the object is the point where the two refracted rays intersect. All three rays should intersect at exactly the same point. This point is merely the point where all light from the top of the object would intersect upon refracting through the lens. Of course, the rest of the object has an image as well and it can be found by applying the same three steps to another chosen point.
4.) Repeat the process for the bottom of the object.
The goal of a ray diagram is to determine the location, size, orientation, and type of image which is formed by the double convex lens. Typically, this requires determining where the image of the upper and lower extreme of the object is located and then tracing the entire image. After completing the first three steps, only the image location of the top extreme of the object has been found. Thus, the process must be repeated for the point on the bottom of the object. If the bottom of the object lies upon the principal axis, then the image of this point will also lie upon the principal axis and be the same distance from the mirror as the image of the top of the object. At this point the entire image can be filled in.
Source: http://www.glenbrook.k12.il.us/gbssci/phys/Class/refrn/u14l5da.html